
Effects of Retrospective Gauge-Based Readjustment of Multisensor Precipitation
Estimates on Hydrologic Simulations

YU ZHANG, SEANN REED, AND DAVID KITZMILLER

National Oceanic and Atmospheric Administration/National Weather Service Office of Hydrologic Development,

Silver Spring, Maryland

(Manuscript received 5 August 2009, in final form 23 August 2010)

ABSTRACT

This paper presents methodologies for mitigating temporally inconsistent biases in National Weather

Service (NWS) real-time multisensor quantitative precipitation estimates (MQPEs) through rain gauge–

based readjustments, and examines their effects on streamflow simulations. In this study, archived MQPEs

over 1997–2006 for the Middle Atlantic River Forecast Center (MARFC) area of responsibility were read-

justed at monthly and daily scales using two gridded gauge products. The original and readjusted MQPEs

were applied as forcing to the NWS Distributed Hydrologic Model for 12 catchments in the domain of

MARFC. The resultant hourly streamflow simulations were compared for two subperiods divided along

November 2003, when a software error that gave rise to a low bias in MQPEs was fixed. It was found that

readjustment at either time scale improved the consistency in the bias in streamflow simulations. For the

earlier period, independent monthly and daily readjustments considerably improved the streamflow simu-

lations for most basins as judged by bias and correlation. By contrast, for the later period the effects were

mixed across basins. It was also found that 1) readjustments tended to be more effective in the cool rather than

warm season, 2) refining the readjustment resolution to daily had mixed effects on streamflow simulations,

and 3) at the daily scale, redistributing gauge rainfall is beneficial for periods with substantial missing MQPEs.

1. Introduction

Multisensor quantitative precipitation estimates

(MQPEs) are created by the National Weather Service

(NWS) River Forecast Centers (RFCs) at near–real time

during river and flash flood forecasting operations. The

primary basis of MQPEs are precipitation gauge reports

and observations of Weather Surveillance Radar-1988

Doppler [WSR-88D; Fulton et al. (1998); see Seo (1998a,b),

Seo et al. (1999), and Seo and Breidenbach (2002) for

methodology]. At an hourly step and a nominal 4-km mesh

length, these products serve as forcing to NWS’s hydrologic

model and have seen increasing natural resource–related

applications (Hardegree et al. 2008; Over et al. 2007).

Despite the promising prospects, these real-time MQPEs

remain subject to biases and inaccuracies because of a va-

riety of factors (e.g., Young et al. 1999, 2000; Jayakrishnan

et al. 2004; Zhang et al. 2007). The radar precipitation

estimates can be compromised by problems ranging from

beam blockage to variable drop size distribution (Smith

et al. 1996; Krajewski and Smith 2002). The resultant errors

can be mitigated by rain gauge–based bias adjustments

and multisensor merging (Seo et al. 1999, 2000a,b; Seo and

Breidenbach 2002; Seo 1998a,b). Yet, the actual impacts

of these measures are limited by the quantity and quality of

gauge reports available during operations. Moreover, the

software for creating MQPEs contained deficiencies that

were corrected over time. Perhaps the most widely known

among these is the ‘‘truncation error’’ (TE)—an error in

the Next Generation Weather Radar (NEXRAD) precip-

itation processing system (PPS) that resulted in under-

estimation of rainfall amounts (Fulton et al. 2003; Zhang

et al. 2007). Subsequent software upgrades corrected this

error, but these changes, as demonstrated later in this paper,

also contributed to temporally inconsistent bias character-

istics of the MQPEs.

Hydrologic models are known to be sensitive to the

spatiotemporal resolution of the input forcing data

(Finnerty et al. 1997; Schaake et al. 1996; Koren et al. 1999)

and, therefore, may need to be calibrated specifically

against archived MQPEs to take full advantage of their
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higher resolution (see Reed et al. 2004 on benefits of

MQPE-based calibration). Yet, the inconsistent bias be-

haviors of archived MQPEs have since limited their use

in model calibration. As such, there has been a great

demand for mitigating the inconsistent MQPE bias to

facilitate calibration and the application of model-based

techniques designed to predict the severity of events

relative to modeled historical trends [see, e.g., Reed et al.

(2007) for flash flood, Thielen et al. (2008) for river flood,

and NCEP-CPC (2005) for soil moisture anomalies].

For removing incoherent temporal bias of the NWS

MQPEs arising from software errors and related upgrades,

an intuitive approach would be to apply the latest version

of the software retrospectively to regenerate the MQPEs.

This approach, however, requires human labor and com-

putational power well beyond the current operational

capacity of NWS RFCs where the MQPE products are

produced. In this paper we propose and evaluate a simpler

alternative—that is, retrospectively adjusting the archived

real-time MQPEs to match gridded gauge products at and

beyond the daily time scale (referred to as ‘‘readjustment

approach’’). The readjustment approach has the advan-

tage of being able to integrate daily and subdaily records

that supplement the operational hourly gauge data in-

volved in creating the MQPEs. It resembles that used in

the North American Land Data Assimilation System

(NLDAS; Cosgrove et al. 2003), but differs from NLDAS

as 1) it uses MQPEs as the primary data source to be bias

corrected, rather than as a reference for disaggregating

gauge data (as in NLDAS); and 2) it retains the high

spatial resolution of NWS MQPEs (NLDAS results are

on a 1/88 grid).

As the gauge-based readjustment is expected to en-

hance the quality of archived real-time MQPEs and

thereby benefit streamflow simulations, its effectiveness

needs to be systematically assessed. Moreover, the ap-

propriate temporal scales for applying the readjustment

remain to be determined. This paper addresses these is-

sues through a set of hydrologic simulation experiments

in a pilot domain, wherein the comparative impacts of

various readjustment schemes on streamflow simulations

were evaluated, and these served as the basis for inferring

the differential quality of readjusted MQPEs [see similar

approaches in Ding et al. (2005a,b)]. These experiments

were carried out for the period of 1997–2006 for 12 catch-

ments in central Maryland that lie in the forecast domain

of the Middle Atlantic River Forecast Center (MARFC).

The readjustment was performed on a monthly and daily

basis using 1) 2.5-min Parameter-elevation Regressions

on Independent Slopes Model (PRISM; Daly et al. 1994)

outputs and 2) 1/88 gridded gauge–based analyses [from

the National Centers for Environmental Prediction, Cli-

mate Prediction Center (NCEP-CPC)], respectively. The

comparative use of these two datasets allows a close

examination of the temporal scale dependence in the

effects of the readjustments. In addition, by stratifying

the streamflow simulations prior to and following the

correction, and between the warm and cool seasons, this

study examines the seasonal dependence in the efficacy of

the methodology and the impacts of the truncation error.

The remainder of the paper is structured as follows.

Section 2 offers a brief overview of the NWS quantita-

tive precipitation estimation procedures and associated

issues. Section 3 describes study sites, reference datasets,

readjustment methodologies, and the hydrologic model.

Section 4 presents the simulation results, and section 5

discusses the results and concludes the study.

2. Radar and multisensor precipitation estimation

a. PPS and MPE

The NWS precipitation estimation algorithms can

be divided into radar-only and multisensor components

(the latter include a gauge-only component). The major

radar-only component is the PPS (Fulton et al. 1998),

which produces real-time estimates of liquid-only pre-

cipitation at ground level (Fulton et al. 1998). The PPS

outputs are disseminated as digital precipitation array

(DPA; also referred to as Stage I products). In the legacy

multisensor algorithms, the Stage I products underwent

bias correction in the Stage II processing, and the results

were quality assured, and mosaicked on a regional basis,

to produce Stage III data. The common map grid system

for all three stages is the polar stereographic Hydrologic

Rainfall Analysis Project (HRAP) mesh (nominal 4-km

resolution in the central United States; Greene and

Hudlow 1982; Reed and Maidment 1999). The legacy

Stage II and III algorithms have since been replaced

by the multisensor precipitation estimator (MPE). MPE

incorporates new and updated algorithms for mean-field

and local bias correction in its products (Seo et al. 1999;

Seo and Breidenbach 2002), as well as provisions for cre-

ating gauge-only and gauge-radar merged products (Seo

1998a,b). In this paper, Stage III and the later MPE-based

products are both referred to as MQPEs.

MQPEs are generated during real-time operations at the

RFCs, where forecasters quality control the gauge reports

and use the hourly reports to conduct bias correction and

multisensor merging (only hourly reports can be directly

ingested). To augment the hourly reports, several RFCs

now disaggregate daily precipitation reports using collo-

cated radar estimates as reference to create artificial hourly

reports, and then lump them with the hourly gauge reports

in generating the finalized MQPEs. A large portion of

the gauge data are supplied via the Hydrometeorological
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Automated Data System (HADS), a real-time platform

that acquires and distributes records from a large number

of gauges (;6000). Data delivered outside of HADS in-

clude those from state and local agencies (i.e., mesonet

data), the automated surface observing system (ASOS),

the Cooperative (COOP) gauge network, and other net-

works such as the Community Collaborative Rain, Hail

and Snow (CoCoRaHS) Network. It is noted that most

automated COOP gauge data are delivered at real time

by HADS, whereas the manual ones are not available at

real time.

b. TE

Around 2000, analyses of PPS products revealed that

the software erroneously truncated scan-to-scan accu-

mulation amounts less than 0.1 mm (Seo et al. 2000a,b,

2002; Fulton et al. 2003). This TE is most pronounced

during prolonged light rain events, and could lead to

considerable underestimation of the cumulative rainfall

in the archived real-time MQPEs (Fulton et al. 2003).

The error was corrected in three successive software re-

leases during 2002/03 (Fulton et al. 2003). An indepen-

dent investigation by MARFC staff, in which MQPEs

were compared with reference daily rain gauge reports,

found a similar change in bias (Cognitore 2005). In both

instances, the bias of MQPEs versus the reference gauge

dataset went from low to near neutral.

3. Methodology

a. Reference data and readjustment schemes

The proposed readjustment approach involves modi-

fying the MQPEs, on either a daily or monthly basis, to

match corresponding gridded gauge products. These

products are assumed to be less biased than the MQPE

products as they incorporated gauge reports that were

not available in real time. Two such gauge products are

employed: 1) the 2.5 arc-minute monthly PRISM and 2) the
1/8 arc-degree gridded daily gauge analysis from NCEP-

CPC. Each dataset and the associated readjustment

methodology are briefly described below.

1) READJUSTMENT WITH MONTHLY PRISM
ANALYSES

PRISM is a knowledge-based approach developed

by Daly et al. (1994) that accounts for orographic and

other effects in producing gridded products from gauge

measurements. In essence, it utilizes a digital elevation

model (DEM) to group gauges, and then integrates

expert knowledge of other factors (e.g., coastal prox-

imity, boundary layer depth) to determine an elevation–

precipitation relationship via regression for each group.

The PRISM datasets have been used regularly as a proxy

for ground truth for readjusting real-time gauge data at

the RFCs. The PRISM monthly dataset on a 2.5 arc-

minute grid mesh is employed in this study (available

from http://www.prism.oregonstate.edu; see Daly et al.

2004 for methodology). The dataset, which is originally

in geographic projection, has been reprojected onto the

HRAP grid via a nearest-neighbor method—that is, for

each HRAP pixel, the value from the most closely located

PRISM pixel (measured under HRAP projection be-

tween the HRAP and PRISM pixel centers) is assigned.

The PRISM-based readjustment proceeded as fol-

lows. First, hourly MQPE grids were summed within

each month to produce a monthly total. To accommo-

date missing values, the monthly total for each HRAP

grid cell was scaled by the ratio of total number of hours

to the number of hours without missing values when the

latter is no greater than three days (no readjustment is

done for cells with more three days of missing values

over a month). Then, for each HRAP cell, a multiplica-

tive bias factor was computed as the ratio of PRISM to

the MQPE monthly totals. The bias grid thus generated

was subsequently applied to scale each hourly MQPE

grid for that month to derive the final, readjusted

MQPEs, with the assumption that the bias is constant

within each month.

2) READJUSTMENT WITH DAILY CPC ANALYSES

The daily CPC gridded gauge-only products were

created by NCEP-CPC and are available for the entire

continental United States (CONUS). The dataset is

produced by interpolating daily and subdaily gauge

observations onto 1/88 grids, with each value for a par-

ticular day representing areal precipitation accumulated

over a 24-hour period ending 1200 UTC of that day.

Generating this dataset entails the use of a PRISM

scheme in spatial interpolation, and daily reports not

ending 1200 UTC were temporally interpolated. On the

average, about 11 000 observations per day are involved

in creating the archival gridded analysis.

Two schemes were devised for readjusting the hourly

MQPE using the daily CPC data. The first one is similar

to that for monthly PRISM-based readjustment—that is,

gridded daily bias factors were computed from daily to-

tals from MQPE and CPC gauge analyses. Bias is set to

unity for any 24-hour period when more than 3 hours of

MQPEs were missing (referred to as ‘‘gap days’’). This

scheme performs no readjustment for any of the gap days.

A second scheme was developed to address this. This

scheme shares the bias computation method with the first

scheme, but it distributes the daily gauge rainfall for each

grid cell equally among the 24 hours for each of the gap

days regardless of the intraday distribution of the gap
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hours (note the hours with valid values are untouched).

These two schemes—referred to as CPC-1 and -2—will

be compared to assess the effects of performing the re-

distribution.

Although the daily CPC data were produced incor-

porating PRISM-based spatial interpolation, its monthly

accumulation often differs from the monthly PRISM (up

to 10%), which is likely a result of the difference in gauge

reports that were used in creating these datasets. To re-

duce such discrepancies and facilitate interpretation of

the comparisons, the daily CPC data for each HRAP cell

were readjusted with a scaling factor constant within a

given month, so that its monthly sum matches the corre-

sponding PRISM monthly total for that bin. The cor-

rected, rather than the original, daily CPC data were then

used as reference in readjusting the MQPEs. Note that

the exact time periods differ slightly for the CPC-based

and PRISM monthly totals (i.e., the former starts and

ends at 1200 UTC of the last day of a month, whereas

the latter starts and ends at 0 local time of the first day

of the month, respectively). Despite this difference, the

monthly totals from the corrected CPC are very close to

the PRISM ones. Also worth noting is that the readjust-

ment of CPC data introduces variations in precipita-

tion values among HRAP cells embedded within a 1/88

box.

b. Study sites and experimental design

Twelve catchments in the state of Maryland were se-

lected to evaluate the hydrologic impacts of readjustment.

With sizes ranging from 84 to 1200 km, these catch-

ments drain much of Maryland between the Blue Ridge

Mountains and the Chesapeake Bay (Fig. 1). Stream

gauge locations, drainage area, and related descriptions

can be found in Table 1. The study catchments are under

the umbrella of the WSR-88D unit located in Sterling,

Virginia (KLWX, at 388589310N, 778208 289410W), and

each has been gauged continuously at its outlet by the

United States Geological Survey (USGS). Geograph-

ically, the basins can be divided into three groups. The

first group consists of four catchments over or near the

Pennsylvania–Maryland border (i.e., canoc, antie, catoc,

and monoc; Fig. 1 and Table 1). The second and third

groups consist of ones with outlets in south–central

Maryland (senec, rocks, nwanac, neanac, wbranch, and

patuxb), and in the vicinity of Baltimore (vnova and

washb), respectively (Fig. 1).

FIG. 1. Study catchments in Maryland and their locations relative

to the WSR-88D at Sterling, VA (KLWX). (top) Location of

Maryland–Pennsylvania and (bottom) catchments and radar loca-

tion (LWX).

TABLE 1. Study catchments.

Station USGS ID Latitude (8N) Longitude (8W) Area (km2) Description

canoc 01614500 39.7164 77.8248 1279 Conococheague Creek at Fairview

antie 01619500 39.4498 77.7302 728 Antietam Creek near Sharpsburg

catoc 01637500 39.4273 77.5562 173 Catoctin Creek near Middletown

monoc 01643000 39.4028 77.3661 2116 Monocacy River at Jug Bridge near Frederick

senec 01645000 39.1281 77.3358 262 Seneca Creek at Dawsonville

rocks 01648000 38.9725 77.0400 161 Rock Creek at Sherrill Drive Washington

nwanac 01651000 38.9523 76.9661 128 NW branch of Anacostia River near Hyattsville

neanac 01649500 38.9603 76.9260 189 NE branch of Anacostia River at Riverdale

wbranch 01594526 38.8142 76.7487 232 Western branch at Upper Marlboro

patuxb 01594440 38.9559 76.6937 901 Patuxent River near Bowie

vnova 01589300 39.3459 76.7332 84 Gwynns Falls at Villa Nova

washb 01589352 39.2715 76.6486 171 Gwynns Falls at Washington Blvd at Baltimore
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The research version of the NWS Hydrologic Labo-

ratory Research Distributed Hydrologic Model (HL-

RDHM; see descriptions in Koren et al. 2004) was

implemented for each of the catchments. The model

represents the landscape on the 4 km HRAP grids. The

implementation for this study involves three HL-RDHM

components. The first one is a snow model (gridded

Snow-17) that relies on temperature to distinguish snow

versus rain, and computes snow accumulation, ablation,

and melt (Anderson 1973, 1976). The second is the

Sacramento Soil Moisture Accounting (SAC-SMA) model

for computing runoff at each HRAP grid cell for given

precipitation, snowmelt, and initial conditions (Burnash

et al. 1973; Burnash 1995; Koren et al. 2004). The third

is a kinematic wave module for routing overland and

channel flows (Koren et al. 2004). The a priori SAC-SMA

parameter values from physiographic information and

snow model parameters commonly used in RFC opera-

tions were adopted without any calibration. These values

have been shown to work well, in a relative sense, in other

studies (Reed et al. 2004; Anderson et al. 2006). For

routing, the cell-to-cell connectivity required for the ki-

nematic routing model was determined from a digital

elevation model (Reed 2003). Routing parameters were

assigned on the basis of USGS flow measurement data

(see Koren et al. 2004 for the method). The reason for

using uncalibrated models is that calibration would only

be effective when the forcing data were consistently bi-

ased from year to year, which is not the case for the RFC

MQPEs, given the aforementioned effects of truncation

error and its correction. On the other hand, use of un-

calibrated models allows us to isolate the impacts of

temporal trends in the forcing data, though the associ-

ated performance statistics do not necessarily reflect the

best results that can be achieved by the model.

Hourly MQPEs for the period of 1997–2006 were re-

trieved from MARFC archives. The first 5 years of MQPEs

were produced using the Stage III algorithm and the rest

via the MPE. As indicated earlier, these MQPEs under-

went readjustment on the basis of monthly PRISM and

daily CPC gauge-only analyses. Both the original and the

readjusted MQPEs were then used to drive the hydro-

logic model. Additional forcing data obtained include

6-hourly 2.58 NCEP gridded temperature reanalysis (needed

for the snow model) and monthly climatological potential

evapotranspiration (PET) values. In assigning the initial

conditions, it was assumed that upper and lower zone

free water storage were each at half capacity and that the

channels were dry. Under these assumptions, continuous

simulations were performed at an hourly time step for

each catchment over the 10-yr period. The simulation

results were subsequently compared with hourly USGS

discharge measurements. To mitigate the uncertainties

due to unknown initial conditions, the first year (1997) was

treated as the ‘‘warm-up’’ period—following the practice

used in phase II of the Distributed Model Intercomparison

Project (DMIP-II; Smith et al. 2006)—and the associ-

ated results were omitted from subsequent analyses.

According to the Radar Operation Center (ROC), op-

erational MPE with the fixes for the TE went in effect

during November 2003 (Daniel Berkowitz 2007, ROC,

personal communication). Therefore, the 10-yr period was

stratified into two subperiods: 1) precorrection (January

1998–November 2003), and 2) postcorrection (December

2003–December 2006). The analyses of MQPEs entail

comparing mean areal precipitation (MAP) and the ac-

curacy of streamflow simulations in the study watersheds.

The primary performance metrics for the latter include

percentage bias (PB) and linear correlation coefficient (r).

The definition of PB is provided below:

PB 5

�
N

i51
S

i
�Q

i

�Q
i

3 100, (1)

where Qi and Si are observed and simulated discharge,

respectively. Any improvements from the readjustment

are judged by the difference in values obtained before

and after applying readjustment (the difference in the

absolute values, jPBij 2 jPBjj, is used for bias).

4. Results

The effectiveness of the three readjustment schemes

(PRISM monthly, and CPC-1 and -2) was examined in

terms of 1) interannual variations of bias in streamflow

simulations, 2) statistics of hourly streamflow simula-

tions before and after the TE correction, and 3) two case

studies of major flood events.

a. Interannual variations of bias

One of the primary goals of readjustment is to miti-

gate temporal variations in MQPE bias. The effective-

ness of the three schemes in this respect is illustrated by

interannual variations in the bias of simulated stream-

flow over 1998–2006 as characterized by 1) multibasin

median of annual MAP and PB of simulated streamflow

(Figs. 2a,b), and 2) interannual range of PB for each

basin (Fig. 3).

Annual MAPs from the three schemes show appre-

ciable differences from 1998 to 2001, while the values

are mostly similar thereafter. For 2000 and 2001, CPC-2

produced considerably higher MAPs than the rest—a

consequence of filling the gap days. As for the stream-

flow bias, one striking feature in Fig. 2b is that, without

readjustment, the median annual PB exhibits a distinct
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and almost monotonic upward trend, with severe un-

derestimation of runoff in 1998 (’280%) morphing to

nearly unbiased values in 2004 and to slight overesti-

mation in 2005. While the presence and the correction of

TE was likely behind the underestimation for 1998–2003

and its subsequent improvement, the progressive up-

ward trend in PB values prior to 2003 might reflect en-

hanced quality of MQPEs due to an increased number

of operational gauge observations at MARFC (from

100–200 per hour average over 1998–2000 to around

400–500 over 2001/02, and to 400–600 for 2003–06), an

improved data collection and delivery system (the data

latency has been much reduced over the period), and a

higher level of quality control of gauge and radar data. The

three readjustment schemes substantially improved the

discharge bias for the earlier period (Fig. 2b). Among

the three schemes, PRISM and CPC-2 yielded better (i.e.,

closer to zero) PB values than CPC-1. By contrast, after

the TE correction, each scheme tended to reduce the pre-

cipitation (Fig. 2a), and the reduction was severe enough

to yield conspicuously negative PB values for 2004 and

2005 (Fig. 2b).

Despite the differing impacts of the readjustment

schemes before and after the TE correction, each scheme—

as shown in Fig. 3—was effective in reducing the interannual

range of PB (i.e., the difference between the maximum

and minimum values). In this respect, readjusting for the

entire period appears more effective than for the pre-TE

period alone (Fig. 3), and the three schemes appear com-

parable in effectiveness (Fig. 3).

b. Statistics before and after TE correction

1) OVERALL

The basin-specific impacts on the MAP and stream-

flow simulations are shown in Fig. 4, where the latter are

characterized by PB and r. The basins are sorted by

increasing drainage area and stratified into two periods

prior to and following the TE correction. The three schemes

are further compared based on the improvement statistics

of simulated streamflow in terms of median of difference

in PB and r before and after readjustment (Table 2). Key

observations follow below.

As noted earlier, each scheme elevated MAP values for

almost every basin prior to the TE correction but tended

to reduce MAP after the TE correction (Figs. 4a,b). For

the earlier period, streamflow simulations based on RFC

MQPEs show pronounced underestimation (Fig. 4c). Each

readjustment scheme increased the MAP and thereby

improved the negative bias (Fig. 4c). Among the schemes,

PRISM and CPC-2 results are close to bias neutral,

whereas CPC-1 ones still show systematic low bias (Fig. 4c).

By comparison, after the TE correction, PB values from

RFC MQPE-based simulations were more evenly distrib-

uted relative to zero (Fig. 4d), reflecting an absence of the

systematic underestimation as observed in the earlier pe-

riod (Fig. 4c). In this context, each readjustment scheme led

to a downward shift in precipitation and runoff, and the

result is uniformly negative PB and higher jPBj for most of

the basins (Fig. 4d; Table 2).

FIG. 2. Interannual variations of annual multibasin median of

(a) MAP amounts and (b) the PB in streamflow simulations for

MARFC MQPEs (RFC), and readjusted MQPEs using PRISM

monthly and CPC daily gauge analysis (PRISM, CPC-1, and CPC-2).

FIG. 3. Interannual range of PB (i.e., PBmax – PBmin) for each

basin between 1998 and 2006. The solid lines represent results from

applying each readjustment scheme for the entire 9-yr period, and

the dotted lines represent those from applying each for the pre-TE

period only.
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The values of correlation, r, also contrasted sharply

before and after the TE correction. For the earlier pe-

riod, each scheme greatly improved r values for most of

the basins (Fig. 4e). In terms of the multibasin median of

r, CPC-1 and -2 results are comparable, and both are

better than PRISM results (Table 2). After the TE cor-

rection, each readjustment scheme still rendered consid-

erable, though less pronounced, improvements in r values,

FIG. 4. Statistics of hourly streamflow prior to and after correction: (left) January 1998–November 2003 and (right)

December 2003–December 2006 in terms of (a),(b) MAP, (c),(d) PB, and (e),(f) correlation r.

TABLE 2. Multibasin median of improvement of degradation in statistics (overall).

January 1998–November 2003 December 2003–December 2006

Statistic PRISM CPC-1 CPC-2 PRISM CPC-1 CPC-2

PB 20.44 20.31 20.47 0.07 0.13 0.09

r 0.08 0.10 0.10 0.04 0.05 0.05
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with CPC daily results again slightly better than PRISM

ones (Fig. 4f; Table 2). Among the basins, r values in

general rises with basin size.

2) SEASONAL VARIATIONS

The hourly statistics were computed for the warm and

cool seasons separately, with the former extending from

April to October and the latter from November to

March. The results are summarized in Figs. 5 and 6 and

Tables 3 and 4.

The warm season results are similar to the overall

ones. Yet, several distinct features are also evident. For

the period after the TE correction, RFC MQPE-based

simulations were biased almost uniformly low in the

warm season (Fig. 5d), whereas in the overall results

positive bias was seen in half of the basins (Fig. 4d). For

both pre- and post-TE correction periods, the negative

PB shown in the simulated streamflow was corrected to

a lesser extent than in the overall results (Fig. 5d; see Fig.

4d for the latter). Lastly, in terms of median r, PRISM

performed comparably with the CPC schemes for the

earlier period (only slightly worse than CPC-1) and slightly

better for the later period (Table 3).

The cool-season season results contrast sharply with the

warm season ones (Fig. 6; Table 4). First, for the earlier

period, PRISM and CPC-2 schemes rendered the simu-

lated streamflow almost bias neutral (Fig. 6c), whereas

for the warm season, the bias was negative despite the

FIG. 5. As in Fig. 4, except for the warm season (April–October).
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readjustment (Fig. 6c). The former is evidently a result

of greater increases in the cool season MAP values with

readjustment (Fig. 6a). For the period following the TE

correction, it is evident that all three schemes still led to

considerable, albeit less pronounced, improvements rel-

ative to the earlier period (Fig. 6). Among the three

schemes, CPC-1 yielded the least bias reduction for the

earlier period and most bias increase for the later period

(Table 4). In terms of median r, CPC-2 fared better than

the other two schemes (Table 4).

c. Case studies

The effectiveness of each readjustment scheme was

more closely examined through studies of two major

flood events for Monocacy River at Jug Bridge (monoc).

The first one occurred prior to the TE corrections—over

late May and early June of 2003. The second one took

place in late September of 2004 after the TE correction.

The MAP and runoff time series for the May–June 2003

event are shown in Fig. 7. This event contained multiple

flood episodes, among which the ones on 17 May, 4 June,

and 8 June were associated with peaks near or exceed-

ing 400 m3 s21. For these episodes, using RFC MQPEs

as model forcing resulted in peaks of less than half the

observed magnitude. Applying each of the three read-

justment schemes considerably improved the simulation

results. Yet, even with the improvements, simulated peaks

via all three schemes were still much below observed

FIG. 6. As in Fig. 4, except for the cool season (November–March).
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Values. Another notable feature for this event is that the

simulation based on the RFC MQPEs missed the

smaller runoff episode between 25 and 30 May. For this

episode, PRISM-based readjustment rendered only

a slight increase in the precipitation and runoff values.

By contrast, CPC-1 and -2 yielded much greater pre-

cipitation amounts on 25 May, and therefore were able

to better reproduce this runoff episode. The lower MAP

values based on RFC MQPEs can be partly explained by

the presence of two missing hours at 0300 and 0400 UTC

on 25 May, when precipitation was assumed to be zero

by the model. In this situation, PRISM-based monthly

readjustment yielded only a slight increase in precipita-

tion at adjacent hours, as it spreads missing precipitation

amounts throughout month. CPC daily schemes, by con-

trast, elevated the precipitation over only the remaining

22 hours, and therefore were able to better resolve this

episode.

The time series for the September 2004 event are

shown in Fig. 8. In this event, remnants of Hurricane

Jeanne brought heavy precipitation and extensive flood-

ing to Maryland. At monoc, observed peak hourly dis-

charge exceeded 540 m3 s21 at 1900–2000 UTC on 30

September—the highest during the period after the TE

correction. The model simulation using RFC MQPEs

produced a comparable peak (601 m3 s21) at 0800 UTC

on 30 September. Applying the readjustments improved

the timing of the peak, possibly because lowered peak

magnitude tends to decrease routing velocity in kinematic

wave routing (401 m3 s21 for PRISM and 337 m3 s21 for

CPC-1 and -2). While daily CPC schemes led to severe

underestimation of peaks, the associated peak timing

estimates were markedly improved (at 1700–1800 UTC).

Further examination of the 24-hour RFC and CPC pre-

cipitation accumulations ending on 29 September revealed

considerable underrepresentation of the magnitude and

spatial variations of precipitation by the latter (Fig. 9). For

this period, 24-hour accumulation from RFC MQPEs

features a sharp southeastward gradient within monoc,

with values ranging from 46 to 157 mm and a standard

deviation of 23 mm. By comparison, the corresponding

CPC gauge analysis shows a much lower and narrower

distribution of precipitation values within the basin—that

is, between 55 and 82 mm with a standard deviation of

6 mm. The inability of the gauge-only analysis in resolving

the spatial gradient likely contributed to a much lower

daily MAP (69 mm versus 88 mm by the RFC MQPEs),

which in turn translated to the low bias in streamflow

simulations.

5. Discussions and conclusions

a. Effectiveness of readjustments and the determining
factors

This study highlights some of the potential benefits,

as well as the pitfalls, of gauge-based readjustment

of operational MQPEs to hydrologic simulations. As

our analyses indicated, precipitation readjustments, con-

ducted on either a monthly or daily scale, may consider-

ably improve the quality of real-time MQPEs and,

in turn, benefit streamflow simulations. The amounts of

improvements, however, can vary depending on the in-

trinsic bias characteristics of the MQPEs, season, mag-

nitude of rainfall events, and readjustment methods. It

appears that the truncation error in the NEXRAD PPS,

until its correction in November 2003, is a major factor

contributing to the low bias in earlier MQPEs, which

forms the most compelling reason for performing the

readjustments. At least partly because of the TE, the

model simulated streamflow with MARFC MQPEs as

forcing systematically underestimated runoff for the 12

Maryland catchments between 1998 and November 2003.

By contrast, for the post-TE correction period, stream-

flow simulations based on RFC MQPEs were close to

bias neutral—arguably a reflection of a fundamental

TABLE 3. Multibasin median of improvement or degradation in statistics (warm season).

January 1998–November 2003 December 2003–December 2006

Statistic PRISM CPC-1 CPC-2 PRISM CPC-1 CPC-2

PB 20.38 20.24 20.41 0.04 0.12 0.09

r 0.06 0.07 0.02 0.06 0.03 0.03

TABLE 4. Multibasin median of improvement or degradation in statistics (cool season).

January 1998–November 2003 December 2003–December 2006

Statistic PRISM CPC-1 CPC-2 PRISM CPC-1 CPC-2

PB 20.48 20.38 20.47 20.24 20.22 20.23

r 0.13 0.15 0.17 0.01 0.03 0.03
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improvement in the intrinsic bias of MQPEs. While the

low bias in the earlier period can also be explained by

model structural and parametric errors along with the lack

of model calibration, such explanations are implausible

given a lack of such low bias after the TE correction.

As evidenced by the contraction in the interannual

range of streamflow PB over 1998–2006 (Fig. 3), each re-

adjustment scheme helps reduce the temporal inconsis-

tency in MQPE. The actual effects on the MQPE quality,

again, contrast between the two periods. For the earlier

period, all three readjustment schemes substantially and

consistently improved the accuracy in streamflow simula-

tion. For the later period, however, the results were mixed

with increased jPBj present for some basins.

The performance of the readjustment schemes also

exhibits strong seasonal dependence. Both before and

after the TE correction, each scheme was much more

effective in improving the accuracy of streamflow sim-

ulations for the cool rather than the warm season, as

judged by the two indicators (PB and r). For the pre-TE

correction period, the improvement led by the read-

justments was much greater for the cool season, where

postadjustment bias values approached zero, and much

less so for the warm season, where bias remained sys-

tematically negative despite the readjustments. After

the TE correction, each scheme tended to reduce pre-

cipitation for both seasons. This reduction mitigated the

existing positive bias for the cool season, but it proved

excessive for the warm season as it turned some positive

biases to negative for some basins and exacerbated the

existing underestimation for others. One possible ex-

planation of the seasonal contrasts in the effects of re-

adjustments is the frequent presence of bright band

effects due to low freezing level that artificially elevates

the radar rain rate estimates. For the warm season,

gauge-only analysis may underestimate areal rainfall as

the sparsity of the gauge network makes it difficult to

resolve convective precipitation with limited spatial

FIG. 7. (top) Time series of MAP from original RFC MQPEs and from readjusted MQPEs

via PRISM, CPC-1 and -2 schemes from 20 May to 9 Jun of 2003. (bottom) Observed and

simulated discharge using each of the aforementioned MQPEs. The dotted lines delineate the

time segment where CPC-1 and -2 schemes yielded appreciably higher MAP values, which led

to subsequent higher simulated discharges that are closer to observed values (highlighted by the

circle).
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scale and pronounced spatial variation in rain rates, as

shown in the September 2006 event. Another plausible

explanation of the seasonal contrasts lies in the seasonal

change in hydrologic model physics—that is, the snow

model functioned only during the cool season and its

function likely induced a change in the bias character-

istics of streamflow simulations.

b. Daily versus monthly readjustments

Ideally, daily scale readjustments—by accounting for

the interday variation of precipitation and suppressing

magnitude- and time-dependent bias—would yield more

accurate precipitation information than monthly scale

readjustments. This was expected to be reflected in the

resultant streamflow simulations. Our analyses, however,

yielded mixed results. For the cool season, daily CPC

schemes indeed led to tangibly higher correlation. Yet,

during the warm season, daily statistics were comparable

and sometimes slightly worse relative to the PRISM

monthly results, and the bias was evidently worse in the

daily readjustment results unless redistribution was allowed

(as in CPC-2).

These mixed results underscore complex trade-offs

between a refined depiction of time–magnitude varia-

tions of bias when the readjustment window moves from

monthly to daily and a potential loss of accuracy in the

readjusted precipitation values due to elevated uncer-

tainties in the reference gauge data at the finer scale.

Naturally, gauge measurements are subject to greater

random errors with refining time resolution. In addition, it

must be noted that the CPC daily data were constructed

by interpolating reports not ending 1200 UTC (not an

issue for the PRISM data)—such a practice inevitably

introduced additional uncertainties. Finally, as our anal-

ysis indicated, the ability of gauge reports to represent

daily spatial rainfall fields remains severely constrained by

the density of the gauges and the grid resolution of the

gauge products. Given the limited data source and coarser

grid resolution of CPC daily data, daily readjustments are

susceptible to errors arising from small-scale variations

in precipitation, and especially so during warm season con-

vective storms.

Despite the aforementioned deficiencies, daily re-

adjustments did show substantial value under certain

FIG. 8. As in Fig. 7, but from 28 Sep to 1 Oct of 2004.
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circumstances. In particular, it could help resolve flood

timing and peak magnitude when corresponding MQPEs

are missing, as it did in the May–June 2003 flood event.

Even after the correction of TE, daily readjustments

proved valuable in eliminating spurious precipitation in

MQPEs. Though excessive missing data (i.e., exceeding

72 hours for a HRAP bin) are relatively rare in MARFC

MQPEs (less than 1% out of the 9-yr period), daily re-

adjustment with redistribution can be particularly helpful

when such a situation does arise (in the Mid-Atlantic and

other RFCs).

c. Limitations, implications, and future directions

This study, while yielding valuable insights on issues

related to MQPE readjustments and their hydrologic

effects, was constrained by its premises and methodol-

ogies. First, this study employed hydrologic model sim-

ulation results as a proxy to infer the quality of MQPEs,

as ‘‘true’’ precipitation cannot be determined regardless

of the quality of sensors. Yet, hydrologic models—being

inexact analogs of natural processes—are subject to struc-

tural and parametric errors; simplifications, such as the use

of climatic PET that are interannually invariant, intro-

duced additional uncertainties. Second, the study was

performed for only 12 basins within a limited geographic

area. It is yet unknown how MQPEs are biased in other

areas outside of the study domain and whether the read-

justments can yield similar improvements elsewhere.

Third, the analyses involved a relatively short post-TE

correction period (3 years). Longer records for this period

will help illuminate the effects of readjustments over a

wider range of rainfall-runoff conditions. Fourth, the study

focuses on an area with a relatively dense gauge network,

whereas in less-populated areas of the United States, the

effects of readjustments using PRISM and CPC data may

be further limited by the underlying gauge density of these

products. Finally, the readjustment methods, especially

the daily CPC-based ones, need to be further analyzed

and refined to overcome some of the shortcomings such

as underrepresenting spatial rainfall variability during

heavy rainfall events.

These limitations notwithstanding, the results of the

model simulations offer strong evidence on the TE-related

variations in temporal bias characteristics of MQPEs and

help define the anticipated benefits of retrospective read-

justments. It was shown that the model, though imperfect

and uncalibrated, was able to generate streamflow simu-

lations of reasonable accuracy both before and after the

TE correction with readjusted MQPEs (median r around

0.6 for streamflow). In addition, as demonstrated in this

study, hydrologic model simulations can help detect pat-

terns otherwise difficult to capture in MAP analysis alone,

FIG. 9. Cumulative precipitation (mm) for the 24 h ending at 1200 UTC on 29 Sep 2004 based on (a) RFC MQPEs and

(b) CPC gauge-only analysis.
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such as the progressive upward trend in the PB values that

was likely linked to a corresponding upward shift in the

MQPE bias (Fig. 2).

To summarize, our results indicate that readjusting

archived real-time MQPEs can substantially improve

the overall temporal consistency in the bias of the dataset,

despite the presence of mixed results for the period after

the TE correction. Therefore, it is expected that the read-

justments can provide immediate benefits by expanding the

usable MQPE archive for calibrating hydrologic models.

Among the readjustment schemes, the monthly scheme

appears to be adequate in this respect. Yet, daily read-

justments are helpful and sometimes necessary for ac-

commodating excessive missing values in MQPEs and

clearing spurious ones. As gauge-based analyses are likely

to underrepresent precipitation totals for both periods,

readjusting for the entire period tends to be more effec-

tive in suppressing the interannual bias range than for the

pre-TE period alone. For model calibration, readjusting

for the entire period might be preferable, as temporally

consistent bias can be relatively easily removed by adjusting

model parameters. A caution here is that any calibration

data should be as similar to the operational data as pos-

sible. There is a trade-off in using a longer, consistently

biased MQPE dataset versus using a shorter one with bias

characteristics closer to the real-time operational data.

The readjustment will definitely be helpful for calibration

for the pre-TE correction period. However, for the post-

TE correction period, modelers need to examine simu-

lations using both original and readjusted datasets to

determine which one to use, particularly when refining

the parameters affecting quick response runoff.

To address aforementioned limitations, particularly

those related to sample size and duration, similar studies

with data from other areas are under way, wherein more

recent MQPE data will be incorporated and examined

for a larger number of catchments. Other focal points of

future studies include possible enhancement of the daily

readjustment scheme and assessing the effects of read-

justments on threshold frequency of simulated discharge.

The former will be investigated by a combination of

analysis of the quality of gauge reports, performing daily

readjustments at coarser spatial scales where areal pre-

cipitation might be more accurate, and possibly incor-

porating a Kalman filter or a simplified version being used

in the MPE (Seo et al. 1999).
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